精英家教网 > 高中数学 > 题目详情
5.如图,将全体正奇数排成一个三角形数阵,根据以上排列规律,数阵中第8行(从上向下数)第3个数(从左向右数)是95.

分析 斜着看,根据数阵的排列规律确定第10行(n≥3)从左向右的第3个数为第$\frac{10×9}{2}$+3=48个奇数即可.

解答 解:根据三角形数阵可知,斜着看,第n斜行奇数的个数为n个,则前n-1斜行奇数的总个数为1+2+3+…+(n-1)=$\frac{n(n-1)}{2}$,
则斜着看,第10行(n≥3)从左向右的第3个数为第$\frac{10×9}{2}$+3=48个奇数,
所以数阵中第8行(从上向下数)第3个数(从左向右数)是2×48-1=95.
 故答案为95.

点评 本题主要考查归纳推理的应用,利用等差数列的通项公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.不等式3+5x-2x2>0的解集为(  )
A.(-3,$\frac{1}{2}$)B.(-∞,-3)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,3)D.(-∞,-$\frac{1}{2}$)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点,过F1的直线l与椭圆交于两点P,Q.
(Ⅰ)若直线l的倾斜角为45°,求|PQ|;
(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xoy中,A,B是圆x2+y2=4上的两个动点,且AB=2,则线段AB中点M的轨迹方程为x2+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,F1,F2分别为椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦点,若点P在椭圆上,且PF1=2,则PF2的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,点$P(1,\frac{3}{2})$和动点Q(m,n)都在离心率为$\frac{1}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求椭圆的方程;
(2)若直线l的方程为3mx+4ny=0,点R(点R在第一象限)为直线l与椭圆的一个交点,点T在线段OR上,且QT=2.
①若m=-1,求点T的坐标;
②求证:直线QT过定点S,并求出定点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(ax2+$\frac{1}{x}$)6展开式的常数项为15,则实数a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若一圆弧长等于它所在圆的内接正三角形的边长,则该弧所对的圆心角弧度数为(  )
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③y=f(|x|)的最大值为3;
④若函数g(x)和f(x)的图象关于原点对称,则y=g(x)由方程$\frac{y|y|}{16}+\frac{x|x|}{9}=1$确定.
其中所有正确的命题序号是(  )
A.③④B.②③C.①④D.①②

查看答案和解析>>

同步练习册答案