【题目】某地区某农产品近几年的产量统计如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码t | 1 | 2 | 3 | 4 | 5 | 6 |
年产量y(万吨) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根据表中数据,建立关于的线性回归方程;
(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据:,计算结果保留小数点后两位)
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:
(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;
(2)三棱锥A′-BC′D的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线的两支为(如图),正三角形PQR的三顶点位于此双曲线上。
(1)求证:P、Q、R不能都在双曲线的同一支上;
(2)设P(-1,-1)在上,Q、R在上。求顶点Q、R的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;
(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角梯形ABDC中,,,,,.
(1)若S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由;
(2)直角梯形ABDC绕直线AC所在直线旋转一周所得几何体名称是什么?并求出其体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com