精英家教网 > 高中数学 > 题目详情
已知向量
a
=(3,4),
b
=(-1,5),向量k
a
+2
b
与向量
c
=(2,-3)垂直,则k的值是(  )
A、2
B、-
17
3
C、1
D、-3
考点:数量积判断两个平面向量的垂直关系,平面向量的坐标运算
专题:平面向量及应用
分析:求出相关向量,利用向量垂直数量积为0,求出k即可.
解答: 解:向量
a
=(3,4),
b
=(-1,5),向量k
a
+2
b
=(3k-2,4k+10),
向量k
a
+2
b
与向量
c
=(2,-3)垂直,
∴2(3k-2)-3(4k+10)=0,
解得:k=-
17
3

故选:B.
点评:本题考查向量的垂直,向量的坐标运算,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:在数列{an}中,若满足
an+2
an+1
-
an+1
an
=d(n∈N+,d 为常数),称{an}为“等差比数列”.已知在“等差比数列”{an}中,a1=a2=1,a3=3,则
a2014
a2012
=(  )
A、4×20122-1
B、4×20132-1
C、4×20142-1
D、4×20132

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,3),
b
=(-4,7),则
b
a
上的投影为(  )
A、
13
5
B、
65
5
C、
13
D、
65

查看答案和解析>>

科目:高中数学 来源: 题型:

对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0∈D,使得当x∈D且x>x0时,总有
|f(x)-h(x)|<m
|g(x)-h(x)|<m
,则称直线l:y=kx+b为曲线y=f(x)与y=g(x)的“公共渐近线”,给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=2-x+3,g(x)=
3x+1
x

②f(x)=
x2+1
x
,g(x)=
x2-1

③f(x)=
2x2
x+1
,g(x)=2(x-1-e-x);
④f(x)=log2x,g(x)=2x
其中曲线y=f(x)与y=g(x)存在“公共渐近线”的是(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗骰子连续投掷两次,两次正面出现点数之和能被4整除的概率是(  )
A、
1
4
B、
2
9
C、
5
18
D、
7
36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px的焦点坐标F(1,0),过F的直线L交抛物线C于A、B两点,直线AO、BO分别与直线m:x=-2相交于M、N.
(1)求抛物线C方程.
(2)求
S△ABO
S△MNO
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三个内角A、B、C对边分别是 a、b、c,
a+b
cosA+cosB
=
c
cosC

(1)求证:角A、C、B成等差数列;
(2)若角A是△的最大内角,求cos(B+C)+
3
sinA的范围
(3)若△ABC的面积S△ABC=
3
,求△ABC 周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥E-ABCD,底面ABCD是矩形,平面EDC⊥底面ABCD,ED=EC=BC=4,CF⊥平面BDE,且点F在EB上.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求三棱锥A-BDE的体积;
(Ⅲ)设点M在线段DC上,且满足DM=2CM,试在线段EB上确定一点N,使得MN∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x3-3x,过点P(1,-2)的直线l与曲线y=f(x)相切,求l的方程;
(2)设f(x)=-
1
3
x3+
1
2
x2+2ax,当0<a<2时,f(x)在1,4上的最小值为-
16
3
,求f(x)在该区间上的最大值.

查看答案和解析>>

同步练习册答案