精英家教网 > 高中数学 > 题目详情
(2011•合肥三模)如图,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分别是AD、BE上点,且AM=BN,将三角形ADE沿AE折起.下列说法正确的是
①②④
①②④
.(填上所有正确的序号)
①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;
②不论D折至何位置都有MN⊥AE;
③不论D折至何位置(不在平面ABC内)都有MN∥AB;
④在折起过程中,一定存在某个位置,使EC⊥AD.
分析:利用直线和平面平行、直线和平面垂直的判定定理、性质定理,结合反例、反证法的思想方法,逐一判断得出答案.
解答:解:由已知,在未折叠的原梯形中,AB∥DE,BE∥AD.所以四边形ABED为平行四边形,∴DA=EB.折叠后得出图形如下:
①过M,N分别作AE,BC的平行线,交ED,EC于F,H.连接FH
HN
CB
=
EN
EB
FM
EA
=
DM
DA

∵AM=BN,∴EN=DM,等量代换后得出HN=FM,
又CB∥EA,∴HN∥FM,
∴四边形MNHF是平行四边形.
∴MN∥FH
MN?面CED,HF?面CED.∴MN∥平面DEC.  ①正确
②由已知,AE⊥ED,AE⊥EC,
∴AE⊥面CED,HF?面CED∴AE⊥HF,∴MN⊥AE;②正确
③MN与AB 异面.假若MN∥AB,则MN与AB确定平面MNAB,
从而BE?平面MNAB,AD?平面MNAB.与BE和AD是异面直线矛盾.③错误.
④当CE⊥ED时,EC⊥AD.
这是因为,由于CE⊥EA,EA∩ED=E,
所以CE⊥面AED,AD?面AED.得出EC⊥AD.④正确.
故答案为:①②④.
点评:本题考查空间直线和直线、直线和平面位置关系的判断.利用有关的定义、定理、性质确定命题的正确性,结合反例、反证法说明命题的错误性,是判断命题真假的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•合肥三模)设函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则函数y=f(x)在区间[0,100]上至少有个
50
50
零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
(1)若
a
b
,求x的值;
(2)当x∈(-
π
6
π
4
)
时,求函数f(x)=
a
b
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)在△ABC中,AB⊥AC,AB=6,AC=4,D为AC的中点,点E在边AB上,且3AE=AB,BD与CE交于点G,则
AG
BC
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)5名男性驴友到某旅游风景区游玩,晚上入住一家宾馆,宾馆有3间客房可选,一间客房为3人间,其余为2人间,则5人入住两间客房的不同方法有
20
20
种(用数字法作答).

查看答案和解析>>

同步练习册答案