精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 的焦点也是椭圆 )的一个焦点, 的公共弦长为.

(Ⅰ)求的方程

(Ⅱ)过点的直线相交于 两点,与相交于 两点,且 同向.若求直线的斜率;

【答案】(1)(2)

【解析】试题分析:(Ⅰ)由抛物线与椭圆共焦点可得,再由公共弦长可得公共点坐标代入与前式联立可得的值;(Ⅱ)设 ,设直线的斜率为,则直线的方程为

与双曲线联立,利用韦达定理,将转化为关于的方程,解可得直线的斜率. 试题解析:解:(1)由抛物线 的焦点,所以,又由的公共弦长为,得公共点坐标,所以,解得

(2)设

,得,所以

设直线的斜率为,则直线的方程为

将②③代入①,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知cos(π+α) = ,且 <α< ,求sin α与cos α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。抽取一个容量为10的样本,每个管理人员被抽到的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),且的导数为.

(Ⅰ)若是定义域内的增函数,求实数的取值范围;

(Ⅱ)若方程有3个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B﹣PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足3an﹣2Sn﹣1=0.
(1)求数列{an}的通项公式;
(2)bn= ,数列{bn}的前n项和为Tn , 求f(n)= (n∈N+)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线.

(1)若直线与曲线相切,求切点横坐标的值;

(2)若函数,求证: .

查看答案和解析>>

同步练习册答案