精英家教网 > 高中数学 > 题目详情

设数列的前项和为,若对于任意的正整数都有
(1)设,求证:数列是等比数列,并求出的通项公式;
(2)求数列的前项和

(1)证数列是等比数列,需利用定义证明,数列通项公式
(2)

解析试题分析:(1)对于任意的正整数都成立,
两式相减,得
, 即
,即对一切正整数都成立.
∴数列是等比数列.
由已知得   即
∴首项,公比,.
.
(2)





考点:数列求通项求和
点评:第一问由求通项主要用到的关系式,而后构造与数列有关的关系式判定是常数;第二问中数列通项公式是一次式与指数式乘积形式的,采用错位相减法求和,这种方法是数列求和题目中常考的方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列是首项的等比数列,其前项和中,成等差数列.
(1)求数列的通项公式;
(2)设,求数列{}的前项和为
(3)求满足的最大正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为正常数,且
(1)求数列的通项公式;
(2)设
(3)是否存在正整数M,使得恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足:
(1)求的通项公式
(2)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且成等差数列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且
(1)求数列的通项公式;(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对任意都有
(Ⅰ)求的值.
(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;
(Ⅲ)令试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且
(1)写出的递推关系式,并求,,的值;
(2)猜想关于的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足
(1)设,证明:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

同步练习册答案