精英家教网 > 高中数学 > 题目详情
13.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f($-\sqrt{2}$)=$\frac{1}{2}$.

分析 直接利用函数的奇偶性以及函数的解析式求解即可.

解答 解:函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,
则f($-\sqrt{2}$)=f($\sqrt{2}$)=log2$\sqrt{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的奇偶性以及函数的解析式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C的中心在坐标原点,离心率为$\frac{1}{2}$,且它的短轴端点恰好是双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)如图,已知直线x=2与椭圆C相交于两点P,Q,点A,B是椭圆C上位于直线PQ两侧的动点,且总满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?若是,请求出此定值.若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga$\frac{λx-2}{x+2}$为奇函数(其中a>0且a≠1,λ为常数).
(1)求出λ的值;
(2)设g(x)=log${\;}_{\frac{1}{2}}$($\frac{λx-2}{x+2}$•$\frac{1}{x-4}$)(x>5),求g(x)的值域;
(3)设φ(x)=loga$\frac{λx-2}{x+2}$是定义域[m,n]上的单调递增减函数,其值域为[logaa(n-1),logaa(m-1)],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
①${log_2}({4^7}×{2^5})$=19
②log35-log315=-1
③${(\frac{16}{81})^{-\frac{3}{4}}}$=$\frac{27}{8}$
④${(\frac{1}{2})^{-5}}$=32
⑤$lg\root{5}{100}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,输出$s=\frac{2015}{2016}$.那么判断框内应填(  )
A.k≤2015B.k≤2016C.k≥2015D.k≥2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|y=$\sqrt{1-{x}^{2}}$},B={y|y=$\sqrt{1-{x}^{2}}$},则A∩B=(  )
A.{(-1,1)}B.{(0,1)}C.[-1,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点P是曲线y2=4x上的一个动点,则点P到点A(0,1)的距离与点P到y轴的距离之和的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{2}-1$C.$\sqrt{2}+1$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x2-mx+3在R上存在零点,则实数m的取值范围是m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$=(3cosx,1),$\overrightarrow{b}$=(5sinx+1,cosx),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则cos2x=$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案