A. | $[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$ | C. | $[-\frac{1}{2},\frac{1}{2}]$ | D. | $[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$ |
分析 以O为原点,OA方向为x轴正方向建立坐标系,分别求出A,B的坐标,进而根据则$\overrightarrow{OC}$=(cosα,sinα),根据正弦函数的性质,即可得到$\frac{x}{2}+y$的取值范围.
解答 解:建立如图所示的坐标系,
可设A(1,0),B(0,1),
设∠AOC=α(0≤α≤$\frac{π}{2}$),
则$\overrightarrow{OC}$=(cosα,sinα).
由$\overrightarrow{OC}$=(x,2y)=(cosα,sinα),
则$\frac{x}{2}+y$=$\frac{1}{2}$(cosα+sinα)=$\frac{\sqrt{2}}{2}$sin(α+$\frac{π}{4}$)(0≤α≤$\frac{π}{2}$),
由$\frac{π}{4}$≤α+$\frac{π}{4}$≤$\frac{3π}{4}$,可得sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{2}}{2}$,1],
即有$\frac{x}{2}+y$∈[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$].
故选:B.
点评 本题考查的知识点是平面向量的综合应用,三角函数的性质,其中建立坐标系,分别求出A,B,C点的坐标,将一个几何问题代数化,是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p<m<n<q | B. | m<p<q<n | C. | p<q<m<n | D. | m<n<p<q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | 0 | D. | -9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,-1) | B. | (-3,1)∪(2,+∞) | C. | (-3,0)∪(1,3) | D. | (-1,1)∪(1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com