精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过两点,且圆心在直线上,直线的方程为

(1)求圆的方程;

(2)证明:直线与圆恒相交;

(3)求直线被圆截得的弦长的取值范围。

【答案】(1);(2)证明见解析;(3)

【解析】

1)设圆的一般方程,将PQ点代入方程,将圆心代入直线,解方程组,即可。

2)求出直线过定点,说明点M在圆内,即可。

3)当直线过圆心时弦长有最大值10,

当直线与过圆心与定点的直线垂直时有最小值

(1)设圆的方程为

由条件得,解得

∴圆的方程为

(2)由,得

,即直线过定点

,知点在圆内,

∴直线与圆恒相交。

(3)圆心,半径为5,由题意知,当点满足垂直于直线时,弦长最短,

直线被圆心截得的最短弦长为

直径最长10,弦长的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.

(1)求数列{an}的通项公式;

(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数和奇函数,且.

(1)求函数的解析式;

(2)设函数,记 .探究是否存在正整数,使得对任意的,不等式恒成立?若存在,求出所有满足条件的正整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).

1)把利润表示为年产量的函数;

2)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查期末考试中高一学生作弊情况,随机抽取了200名高一学生进行调查,设计了两个问题,问题1:你出生月份是奇数吗?问题2:期末考试中你作弊了吗?然后让受调查的学生每人掷一次币,出现正面朝上则回答问题1,出现反面朝上则回答问题2,答案只能填不能弃权.结果统计后得到了53的答案,则估计有百分之几的学生作弊了?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点与其短轴的一个端点是等边三角形的三个顶点,点在椭圆上,直线与椭圆交于两点,与轴,轴分别交于点,且,点是点关于轴的对称点,的延长线交椭圆于点,过点分别作轴的垂线,垂足分别为.

(1)求椭圆的方程;

(2)是否存在直线,使得点平分线段?若存在,求出直线的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为(

A. B. C. D.

查看答案和解析>>

同步练习册答案