【题目】已知圆经过两点,且圆心在直线上,直线的方程为。
(1)求圆的方程;
(2)证明:直线与圆恒相交;
(3)求直线被圆截得的弦长的取值范围。
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为.
(Ⅰ)求曲线的参数方程;
(Ⅱ)过原点且关于轴对称的两条直线与分别交曲线于、和、,且点在第一象限,当四边形的周长最大时,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的偶函数和奇函数,且.
(1)求函数,的解析式;
(2)设函数,记 .探究是否存在正整数,使得对任意的,不等式恒成立?若存在,求出所有满足条件的正整数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).
(1)把利润表示为年产量的函数;
(2)年产量是多少时,工厂所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为调查期末考试中高一学生作弊情况,随机抽取了200名高一学生进行调查,设计了两个问题,问题1:你出生月份是奇数吗?问题2:期末考试中你作弊了吗?然后让受调查的学生每人掷一次币,出现“正面朝上”则回答问题1,出现“反面朝上”则回答问题2,答案只能填“是”或“否”不能弃权.结果统计后得到了53个“是”的答案,则估计有百分之几的学生作弊了?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点与其短轴的一个端点是等边三角形的三个顶点,点在椭圆上,直线与椭圆交于,两点,与轴,轴分别交于点,,且,点是点关于轴的对称点,的延长线交椭圆于点,过点,分别作轴的垂线,垂足分别为,.
(1)求椭圆的方程;
(2)是否存在直线,使得点平分线段?若存在,求出直线的方程,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com