精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=lnx-ax+1在$[{\frac{1}{e},e}]$内有零点,则a的取值范围为0≤a≤1.

分析 分离参数,构造函数,根据导数求出函数的最值,即可求出a的范围.

解答 解:f(x)=lnx-ax+1在$[{\frac{1}{e},e}]$内有零点,
∴f(x)=lnx-ax+1=0,在$[{\frac{1}{e},e}]$内有恒成立
∴ax=lnx+1,
∴a=$\frac{lnx+1}{x}$,
设g(x)=$\frac{lnx+1}{x}$,
则g′(x)=-$\frac{lnx}{{x}^{2}}$,
函数g(x)在[$\frac{1}{e}$,1]上递增,在[1,e]上递减,
∴g(x)max=g(1)=1,
g($\frac{1}{e}$)=0,g(e)=$\frac{2}{e}$,
g(x)min=g($\frac{1}{e}$)=0,
∴0≤a≤1
故答案为:0≤a≤1.

点评 本题考查了参数的取值范围的求法,关键是分离参数,构造函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设A,B是非空集合,定义A×B={x|x∈A∪B,且x∉A∩B},已知A={x|0≤x≤2},B={x|x≥1},则A×B等于(  )
A.(2,+∞)B.[0,1]∪[2,+∞)C.[0,1)∪(2,+∞)D.[0,1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a>0,b<0,c<0,则直线ax+by+c=0必不通过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知幂函数f(x)=xa的部分对应值如下表,则不等式|f(x)|≤2的解集是(0,4]

x

1
$\frac{1}{2}$
f(x)
1
$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$,则目标函数$z=\frac{y}{x+1}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=4x-${\;}^{\frac{1}{2}}$-3×2x+5(0≤x≤2)的值域是[$\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角,动点D在斜边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)求CD与平面AOB所成角的正弦的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两条异面直线a,b所成角为60°,则过一定点P,与直线a,b都成60°角的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{{x}^{2}}{4}$+y2=1的长轴长为(  )
A.4B.2C.1D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案