精英家教网 > 高中数学 > 题目详情
曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A、B两点,点P在C上,且位于x轴上方,PA⊥PF.
(Ⅰ)求曲线C的方程;
(Ⅱ)求点P的坐标.
(I)设G是曲线C上任意一点,依题意,|GE|+|GF|=12.
所以曲线C是以E、F为焦点的椭圆,且椭圆的长半袖a=6,半焦距c=4,
所以短半轴b=
62-42
=
20

所以所求的椭圆方程为
x2
36
+
y2
20
=1

(II)设点P的坐标为(x,y)
AP
=(x+6,y),
FP
=(x-4,y),由已知得 
x2
36
+
y2
20
=1
(x+6)(x-4)+y2=0

则 2x2+9x-18=0,解之得x=-6或x=
3
2

当x=-6时,y=0,与y>0矛盾,舍去;
x=
3
2
时,y2=
75
4
,取y=
5
3
2
(舍负)
P(
3
2
5
3
2
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A、B两点,点P在C上,且位于x轴上方,PA⊥PF.
(Ⅰ)求曲线C的方程;
(Ⅱ)求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A,B两点,点P在曲线C上且位于x轴上方,满足
PA
PF
=0

(1)求曲线C的方程;
(2)求点P的坐标;
(3)以曲线C的中心O为圆心,AB为直径作圆O,是否存在过点P的直线l使其被圆O所截的弦MN长为3
15
,若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A,B两点,点P在曲线C上且位于x轴上方,满足数学公式
(1)求曲线C的方程;
(2)求点P的坐标;
(3)以曲线C的中心O为圆心,AB为直径作圆O,是否存在过点P的直线l使其被圆O所截的弦MN长为数学公式,若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年安徽省六校教育研究会高考数学试卷(文科)(解析版) 题型:解答题

曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A,B两点,点P在曲线C上且位于x轴上方,满足
(1)求曲线C的方程;
(2)求点P的坐标;
(3)以曲线C的中心O为圆心,AB为直径作圆O,是否存在过点P的直线l使其被圆O所截的弦MN长为,若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案