精英家教网 > 高中数学 > 题目详情
3.若角α终边所在的直线经过点$P(cos\frac{3π}{4},sin\frac{3π}{4})$,O为坐标原点,则|OP|=1,$cos({\frac{π}{2}+α})$=$-\frac{{\sqrt{2}}}{2}$.

分析 由条件利用任意角的三角函数的定义,两点间的距离公式,求得|OP|以及cos($\frac{π}{2}$+α)的值.

解答 解:∵角α终边所在的直线经过点$P(cos\frac{3π}{4},sin\frac{3π}{4})$,O为坐标原点,则|OP|=$\sqrt{{cos}^{2}\frac{3π}{4}{+sin}^{2}\frac{3π}{4}}$=1,
cos($\frac{π}{2}$+α)=-sinα=-$\frac{sin\frac{3π}{4}}{1}$=-$\frac{\sqrt{2}}{2}$,
故答案为:1;-$\frac{\sqrt{2}}{2}$.

点评 本题主要考查任意角的三角函数的定义,两点间的距离公式、诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a)且在该点处切线的倾斜角为$\frac{π}{4}$.
(1)试用a表示b,c;
(2)若f(x)在[$\frac{1}{2}$,+∞)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数是幂函数的是(  )
①y=-x2;②y=2x;③y=xπ;④y=(x-1)3;⑤y=$\frac{1}{x^2}$;⑥y=x2+$\frac{1}{x}$.
A.①③⑤B.①②⑤C.③⑤D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知幂函数$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)为偶函数,且在(0,+∞)上是增函数.
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在区间(2,3)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,函数y=f(x)的图象在点P(2,y)处的切线是L,则f(2)+f′(2)=(  )
A.-4B.3C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若两个三角形的三条边长分别为a、b、c和lga、lgb、lgc,且a、b、c两两不等,试判断这两个三角形是否相似?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,BD=CE,G、H为BC、DE中点,AB=AC,FD=FE,∠BAC=∠DFE.求证:AF∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知奇函数f(x)的定义域为实数集R,且f(x)在(-∞,+∞)上是增函数,是否存在这样的实数m,使f(4m-2mcosθ)-f(4-2cos2θ)>f(0)对所有的θ∈[0,$\frac{π}{2}$]均成立?若存在,求出适合条件的实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为$\frac{77π}{2}$.

查看答案和解析>>

同步练习册答案