精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,圆C的参数方程为 (θ为参数),直线l经过点P(1,1),倾斜角
(1)写出直线l的参数方程;
(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之积.

【答案】
(1)解:直线l的参数方程为 ,即
(2)解:圆C的参数方程 化为普通方程为x2+y2=4,把直线

代入 x2+y2=4,可得 ,∴ ,t1t2=﹣2,

则点P到A,B 两点的距离之积为2


【解析】(1)由题意可得直线l的参数方程为 ,化简可得结果.(2)圆C的参数方程化为普通方程,把直线的参数方程代入 x2+y2=4化简,利用根与系数的关系求得t1t2
的值,即可得到点P到A,B 两点的距离之积为2.
【考点精析】本题主要考查了直线的参数方程的相关知识点,需要掌握经过点,倾斜角为的直线的参数方程可表示为为参数)才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.

(1)求证:BABM=BCBN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是(﹣∞,0)∪(0,+∞)上的偶函数,x>0时f(x)=x﹣ ,求x<0时f(x)的表达式,判断f(x)在(﹣∞,0)上的单调性,并用定义给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 = .

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个零点.

(1)求满足条件的最小正整数的值;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣x2+4x+3,若在区间[﹣2,1]上,f(x)≥0恒成立,则a的取值范围是(
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的迅速发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:

年份

2010

2011

2012

2013

2014

时间代号x

1

2

3

4

5

储蓄存款y (千亿元)

5

6

7

8

10

附:回归方程 中, =
(1)求y关于x的线性回归方程
(2)用所求回归方程预测该地区今年的人民币储蓄存款.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x
(1)求函数f(x)的单调区间,并求函数f(x)的极值;
(2)若方程x3﹣3x﹣a+1=0有三个相异的实数根,求a的取值范围.

查看答案和解析>>

同步练习册答案