精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为 (t为参数).为极点,x轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)设曲线与曲线交于两点,求的值

【答案】1;(22

【解析】

1)曲线参数方程消去参数t,可得到的普通方程,进而将其转化为极坐标方程即可,利用极坐标方程与直角坐标方程间的关系,可将的极坐标方程化为直角坐标方程;

2)结合曲线的极坐标方程,可得,展开并整理得,设两点所对应的极径分别为,可求得的值,进而可得到的值.

1)由消去参数t,得

,可得曲线的极坐标方程为.

,可得曲线的直角坐标方程为,即.

2)由,得

,得

,即,整理得

两点所对应的极径分别为,则

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为万元

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到如下折线图下面关于这两位同学的数学成绩的分析中,正确的共有( )个

甲同学的成绩折线图具有较好的对称性,与正态曲线相近,故而平均成绩为130分;

根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;

乙同学的数学成绩与考试次号具有比较明显的线性相关性,且为正相关;

乙同学在这连续九次测验中的最高分与最低分的差超过40分

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是边长为1的菱形,

ECD的中点,PA底面ABCD

I)证明:平面PBE平面PAB

II)求二面角A—BE—P和的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于15小时,也不超过40小时,设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.

1)写出的解析式;

2)选择哪家比较合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)设数列的前项和为.已知.

1)写出的值,并求数列的通项公式;

2)记为数列的前项和,求

3)若数列满足,求数列的通项公式.

查看答案和解析>>

同步练习册答案