精英家教网 > 高中数学 > 题目详情

【题目】椭圆,右焦点为是斜率为的弦,的中点为的垂直平分线交椭圆于两点,的中点为.当时,直线的斜率为为坐标原点).

1)求椭圆的标准方程;

2)设原点到直线的距离为,求的取值范围;

3)若直线,直线的斜率满足,判断并证明是否为定值.

【答案】(1);(2;(3)是定值,证明过程见解析.

【解析】

(1)先设,根据题意,得到,两式作差,根据弦中点的坐标,由题意,求出,再根据焦点坐标,得到,两式联立,即可求出结果;

2)先设直线的方程为:,与椭圆方程联立,设

根据韦达定理,求出,得到的方程为:,与椭圆方程联立,设

求出,表示出,根据点到直线距离公式,表示出,进而可根据换元法求取值范围;

3)根据(2)的结果,由,求出,再由弦长公式,分别求出,进而可得出结果.

(1)设

由题意,,两式作差,得

整理得:

是斜率为的弦,的中点为,当时,直线的斜率为

所以,即,即①,

又椭圆右焦点为,所以②,

由①②解得:

因此,椭圆的标准方程为

2)设直线的方程为:

消去得,

,所以

因为的垂直平分线,所以的方程为:

消去得,

所以

的中点的坐标为

因此

又原点到直线的距离

所以

,则

3)由(2)可得:

所以

因为直线,直线的斜率满足

所以,整理得:,所以

所以

因此.

取定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若函数在区间上是单调函数,试求的取值范围;

2)若函数在区间上恰有3个零点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.

,点K在椭圆E上,分别为椭圆的两个焦点,求的范围;

证明:直线OM的斜率与l的斜率的乘积为定值;

若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥,记二面角的平面角为,直线与平面所成的角为,直线所成的角为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知是椭圆的右焦点,直线与椭圆相切于点

1)若,求

2)若,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)讨论函数在定义域内极值点的个数;

2)设直线为函数的图象上一点处的切线,证明:在区间上存在唯一的,使得直线与曲线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是中国境内一座连接中国香港、广东珠海和中国澳门的桥隧工程,因其超大的建筑规模、空前的施工难度以及顶尖的建造技术闻名世界,为内地前往香港的游客提供了便捷的交通途径,某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为,现使用分层抽样的方法从这些旅客中随机抽取名,若青年旅客抽到60人,则(

A.老年旅客抽到150B.中年旅客抽到20

C.D.被抽到的老年旅客以及中年旅客人数之和超过200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191017日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )

A.18B.20C.22D.24

查看答案和解析>>

同步练习册答案