精英家教网 > 高中数学 > 题目详情
11.已知:$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),且$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,则点C的坐标为$(-3,\frac{29}{4})$.

分析 设C(x,y),则$\overrightarrow{AC}$=(x+3,y-1),$\overrightarrow{BC}$=(x,y-5),$\overrightarrow{AB}$=(3,4),由$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,利用向量共线定理、向量垂直与数量积的关系即可得出.

解答 解:设C(x,y),则$\overrightarrow{AC}$=(x+3,y-1),$\overrightarrow{BC}$=(x,y-5),$\overrightarrow{AB}$=(3,4),
∵$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,∴5(x+3)=0,$\overrightarrow{BC}•\overrightarrow{AB}$=3x+4(y-5)=0,
解得x=-3,y=$\frac{29}{4}$.
则点C的坐标:$(-3,\frac{29}{4})$.
故答案为:$(-3,\frac{29}{4})$.

点评 本题考查了向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在(x-3)7的展开式中,x5的系数是189(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线的渐近线为y=±$\sqrt{3}$x,则它的离心率可能是(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}$或$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)(x∈R)图象过点(e,0),f'(x)为函数f(x)的导函数,e为自然对数的底数,若x>0时,xf'(x)<2恒成立,则不等式f(x)+2≥2lnx解集为(0,e].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn.已知S3=7,且3a2是a1+3与a3+4的等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线的渐近线方程为$y=±\sqrt{3}x$,一个焦点为$(0,-2\sqrt{2})$,则双曲线的标准方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m的值为(  )
A.0B.11C.22D.88

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,
(1)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.
(2)若对一切实数x,|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=3cos($\frac{π}{2}$x-$\frac{π}{8}$)的最小正周期为4.

查看答案和解析>>

同步练习册答案