如图所示,两条异面直线AB,CD与三个平行平面α,β,γ分别相交于A,E,B及
C,F,D,又AD、BC与平面β的交点为H,G.
求证:四边形EHFG为平行四边形。
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.
(Ⅰ)求证:平面;
(Ⅱ)设的中点为,求证:平面;
(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为、,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使⊥,说明理由.
(2)问当Q点惟一,且cos<,>=时,求点P的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
在空间直角坐标系O-xyz中,平面OAB的法向量为=(2, –2, 1), 已知P(-1, 3, 2),则P到平面OAB的距离等于 ( )
A.4 | B.2 | C.3 | D.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x、y的值分别为( )
A.x=1,y=1 | B.x=1,y= |
C.x=,y= | D.x=,y=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com