精英家教网 > 高中数学 > 题目详情

如图所示,两条异面直线AB,CD与三个平行平面α,β,γ分别相交于A,E,B及
C,F,D,又AD、BC与平面β的交点为H,G.
求证:四边形EHFG为平行四边形。

证明:∵平面ABC∩平面α=AC,平面ABC∩平面β=BC,α∥β
∴AC∥EG.同理可证AC∥HF.
∴EG∥HF.同理可证EH∥FG.
∴四边形EHFG为平行四边形.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.
(Ⅰ)求证:平面
(Ⅱ)设的中点为,求证:平面
(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱中,已知
(1)求证:
(2)设上一点,试确定的位置,使平面,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使,说明理由.
(2)问当Q点惟一,且cos<>=时,求点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在空间直角坐标系O-xyz中,平面OAB的法向量为=(2, –2, 1), 已知P(-1, 3, 2),则P到平面OAB的距离等于 (  )

A.4 B.2 C.3 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若+x+y,则x、y的值分别为(  )

A.x=1,y=1 B.x=1,y=
C.x=,y= D.x=,y=1

查看答案和解析>>

同步练习册答案