精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的两个焦点为 ,离心率为,点 在椭圆上, 在线段上,且的周长等于

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过圆 上任意一点作椭圆的两条切线与圆交于点 ,求面积的最大值.

【答案】(1;(2取最大值.

【解析】试题分析:(1)由的周长为可得,由离心率,进而的椭圆的标准方程;(2)先根据韦达定理证明两切斜线斜率积为,进而得两切线垂直,得线段为圆的直径, ,然后根据不等式及圆的几何意义求的最大值.

试题解析:(1)由的周长为,得,由离心率,得.所以椭圆的标准方程为:

2)设,则

)若两切线中有一条切线的斜率不存在,则,另一切线的斜率为0,从而.此时,

)若切线的斜率均存在,则,设过点的椭圆的切线方程为

代入椭圆方程,消并整理得:

依题意

设切线的斜率分别为,从而,即

线段为圆的直径,

所以

当且仅当时, 取最大值4.由()()可得: 最大值是4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

)设三条线段的长分别为5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

高校

相关人数

抽取人数

A

18


B

36

2

C

54


)求

)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国好声音The Voice of China》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手演唱完后,四位导师为其转身的情况如下表所示:

现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.

1求选出的两人导师为其转身的人数和为4的概率;

2记选出的2人导师为其转身的人数之和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 是焦点,直线是经过点的任意直线.

(Ⅰ)若直线与抛物线交于两点,且是坐标原点, 是垂足),求动点的轨迹方程;

(Ⅱ)若两点在抛物线上,且满足,求证:直线必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列的前五项和,且成等比数列.

1求数列的通项公式;

2为数列的前项和,且存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线相交于两点,点关于轴的对称点为

(Ⅰ)判断点是否在直线上,并给出证明;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家精准扶贫,产业扶贫的战略,进一步优化能源消费结构,某市决定在一地处山区的县推进光伏发电项目,在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表,以样本的频率作为概率.

用电量(度)

户数

5

15

10

15

5

(1)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为,求的数学期望;

(2)已知该县某山区自然村有居民300户,若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以元/度进行收购.经测算以每千瓦装机容量平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 中点, 中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值的大小;

(Ⅲ)在棱上是否存在一点,使得的余弦值为?若存在,指出点上的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案