【题目】在平面直角坐标系中,已知 为椭圆 的左焦点,且椭圆过.
(Ⅰ)求椭圆的方程;
(Ⅱ) 是否存在平行四边形 ,同时满足下列两个条件:
①点在直线上;②点 在椭圆上且直线 的斜率等于1.如果存在,求出点坐标;如果不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 140 | ||
对商品不满意 | 10 | ||
合计 | 200 |
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线,,C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为常数,函数,给出以下结论:
(1)若,则存在唯一零点
(2)若,则
(3)若有两个极值点,则
其中正确结论的个数是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在九年级上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图),且规定计分规则如下表:
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(1)请估计学生的跳绳个数的众数和平均数(保留整数);
(2)若从跳绳个数在,两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求2人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在正方形中,是的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.
图1 图2
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】轮船A从某港口O要将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以15海里/时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以v海里/时的航速匀速行驶,经过t小时与轮船B相遇,
(1)若使相遇时轮船A航距最短,则轮船A的航行速度的大小应为多少?
(2)假设轮船B的航行速度为30海里/时,轮船A的最高航速只能达到30海里/时,则轮船A以多大速度及沿什么航行方向行驶才能在最短时间内与轮船B相遇,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com