精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知 为椭圆 的左焦点,且椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ) 是否存在平行四边形 ,同时满足下列两个条件:

①点在直线上;②点 在椭圆上且直线 的斜率等于1.如果存在,求出点坐标;如果不存在,说明理由.

【答案】(Ⅰ).(Ⅱ)见解析.

【解析】试题分析:(1)根据c及椭圆过点,即可求出a,b,写出椭圆的标准方程;(2)假设存在,设直线的方程为联立椭圆方程后,可计算C点的纵坐标,又C点在椭圆上,根据椭圆范围知,矛盾.

试题解析:

(Ⅰ)由题意得: 所以 ,椭圆的方程为.

(Ⅱ)不存在满足题意的平行四边形

理由如下:

假设存在满足题意的平行四边形.

设直线的方程为,线段的中点,点.

.

,解得

因为 , 所以 .

因为 四边形为平行四边形,所以 的中点.

所以 点的纵坐标.

因为 点在椭圆上,

所以 .这与矛盾.

所以 不存在满足题意的平行四边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,C与l有且仅有一个公共点.

(Ⅰ)求a

(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为常数,函数,给出以下结论:

(1)若,则存在唯一零点

(2)若,则

(3)若有两个极值点,则

其中正确结论的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在九年级上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图),且规定计分规则如下表:

每分钟跳绳个数

得分

17

18

19

20

1)请估计学生的跳绳个数的众数和平均数(保留整数);

2)若从跳绳个数在两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求2人得分之和不大于34分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形中,的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.

图1 图2

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船A从某港口O要将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以15海里/时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以v海里/时的航速匀速行驶,经过t小时与轮船B相遇,

1)若使相遇时轮船A航距最短,则轮船A的航行速度的大小应为多少?

2)假设轮船B的航行速度为30海里/时,轮船A的最高航速只能达到30海里/时,则轮船A以多大速度及沿什么航行方向行驶才能在最短时间内与轮船B相遇,并说明理由.

查看答案和解析>>

同步练习册答案