精英家教网 > 高中数学 > 题目详情
14.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=ax-2其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式.

分析 (1)由于f(x)是定义在R上的奇函数,有f(-x)=-f(x),即可得出f(2)+f(-2).
(2)根据f(x)是定义在R上的奇函数,有f(-x)=-f(x),且当x>0时,f(x)=ax-2,即可得出x≤0时的解析式.

解答 解:(1)∵f(x)是定义在R上的奇函数,有f(-x)=-f(x),
则f(2)+f(-2)=0.
(2)∵f(x)是定义在R上的奇函数,有f(-x)=-f(x),且当x>0时,f(x)=ax-2,
其中a>0,且a≠1.
则当x<0时,有-x>0,则f(-x)=a-x-2,
∴当x<0时f(x)=-f(-x)=-a-x+2;且f(0)=0.
∴$f(x)=\left\{{\begin{array}{l}{{a^x}-2}&{x>0}\\ 0&{x=0}\\{-{a^{-x}}+2}&{x<0}\end{array}}\right.$.

点评 本题考查了函数的奇偶性、求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角A,B,C对应的边分别为a,b,c,若(a2+b2-c2)tanC=ab,则角C等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$f(x)=\left\{\begin{array}{l}2x-3(x>0)\\{e^x}(x<0)\end{array}\right.$,则f[f(1)]=(  )
A.eB.$\frac{1}{e}$C.e2D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆的长轴长为6,焦距为$4\sqrt{2}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=log${\;}_{\frac{1}{2}}$x在[2,4]上的最大值与最小值的差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=ln(x2-4x+3)的单调减区间为(  )
A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x,若实数x1,x2,…x2015满足x1+x2+…+x2015=3,则f(x1)f(x2)…f(x2015)的值=27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tan(π+α)=2,计算
(Ⅰ)$\frac{{2cos(\frac{π}{2}+α)-cos(π-α)}}{{sin(\frac{π}{2}-α)-3sin(π+α)}}$;
(Ⅱ)$\frac{{{{sin}^3}α-cosα}}{{{{sin}^3}α+2cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

查看答案和解析>>

同步练习册答案