精英家教网 > 高中数学 > 题目详情
在△ABC中,三内角A、B、C的对边分别是a、b、c.
(1)若c=
6
,A=45°,a=2,求C、b;
(2)若4a2=b2+c2+2bc,sin2A=sinB•sinC,试判断△ABC的形状.
分析:(1)△ABC中,由正弦定理 求出sinC的值,可得C的值,由三角形内角和公式可得到B的值,利用两角和的正弦求出sinB的值,再由正弦定理求出b.
(2)由sin2A=sinB•sinC,可得 a2=bc,根据4a2=b2+c2+2bc,可得b=c,故△ABC为等腰三角形.
解答:解:(1)△ABC中,由正弦定理可得
2
2
2
=
6
sinC
,∴sinC=
3
2
,∴C=60°,∴B=75°.
∴sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=
6
+
2
4

再由正弦定理可得
2
2
2
=
b
sin75°
=
b
6
+
2
4
,∴b=
3
+1.
(2)∵sin2A=sinB•sinC,∴a2=bc,
又4a2=b2+c2+2bc,∴(b-c)2=0,
∴b=c,故△ABC为等腰三角形.
点评:本题考查正弦定理的应用,两角和的正弦公式,判断三角形的形状的方法,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案