精英家教网 > 高中数学 > 题目详情

【题目】如图1,平面五边形中,是边长为2的正三角形.现将沿折起,得到四棱锥(如图2),且.

1)求证:平面平面

2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由.

【答案】1)证明见解析;2)存在点.

【解析】

(1)推出,而得出平面,再由面面垂直的判定定理即可证明.

(2)假设存在点的中点,设的中点为,连接,可推出四边形是平行四边形,从而得出,即可求得平面.由此能求出在棱上存在点,使得平面,此时.

(1)证明:由已知得,因为

所以平面.

平面,所以平面平面.

2)在棱上存在点,使得平面,此时.

理由如下:

假设存在点的中点,

的中点为,连接

.

因为,且

所以,且

所以四边形是平行四边形,

所以.

因为平面,且平面

所以平面.

所以在棱上存在点,使得平面,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρasinθa≠0.

1)求圆C的直角坐标方程与直线l的普通方程;

2)设直线l截圆C的弦长是半径长的倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知有且仅有3个零点,下列结论正确的是(

A.上存在,,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数处的切线过点,求的方程;

2)若且函数有两个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段的中点为,且点到抛物线的焦点F的距离之和为8

1)求抛物线的标准方程;

2)若线段的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的普通方程为在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为写出圆C的参数方程和直线l的直角坐标方程;设直线lx轴和y轴的交点分别为ABP为圆C上的任意一点,求的取值范围.

查看答案和解析>>

同步练习册答案