精英家教网 > 高中数学 > 题目详情
精英家教网如图,过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的动点M引圆O:x2+y2=b2的两条切线MA,MB,其中A,B分别为切点,,若椭圆上存在点M,使∠BMA=
π
2
,则该椭圆的离心率为
 
分析:由∠AMB=90°及圆的性质,可得 |OM|=
2
b
,故|OM|2=2b2≤a2,a2≤2c2,由此可得到椭圆离心率的取值范围.
解答:解:由∠APB=90°及圆的性质,
可得 |OM|=
2
b
,∴|OM|2=2b2≤a2
∴a2≤2c2e2
1
2
2
2
≤e<1

故答案为:[
2
2
,1)
点评:本题考查直线和椭圆的位置关系和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线x2=4
3
y
的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:如图,过椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;    
②若椭圆的短轴长为8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

附加题:如图,过椭圆C:数学公式(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;  
②若椭圆的短轴长为8,并且数学公式,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州二中高三(下)2月月考数学试卷(文科)(解析版) 题型:填空题

如图,过椭圆C:+=1(a>b>0)上的动点M引圆O:x2+y2=b2的两条切线MA,MB,其中A,B分别为切点,,若椭圆上存在点M,使∠BMA=,则该椭圆的离心率为   

查看答案和解析>>

同步练习册答案