精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)设时,求的导函数的递增区间;

2)设 ,求的单调区间;

3)若 恒成立,求的取值范围.

【答案】1

2)当时,的单调递减区间为,无单调递增区间,

时,的单调递减区间为,单调递增区间为

3

【解析】

1)将代入函数,求出,即,再求出,进而求出的单调递增区间;

2)对求导,讨论的取值范围,求出的单调区间;

3)分离参数,不等式 恒成立转化为恒成立,构造新的函数,求出的最大值,从而求得的取值范围.

解:(1

时,

,得

的单调递增区间为

2

,则恒成立,单调递减;

,令,得单调递增,

,得单调递减.

综上所述,

时,的单调递减区间为,无单调递增区间;

时,的单调递减区间为,单调递增区间为

3恒成立可转化为恒成立,

则当时,单调递增,

时,单调递减,

,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若函数存在极大值,且极大值为1,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.

1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法?

2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知

1)求的值;

2)求数列的通项公式;

3)令,证明:对任意,均有(要求不得使用数学归终法).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,求证:

1在区间存在唯一极大值点;

2上有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.

1)求一件手工艺品质量为B级的概率;

2)若一件手工艺品质量为ABC级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100.

①求10件手工艺品中不能外销的手工艺品最有可能是多少件;

②记1件手工艺品的利润为X元,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

中,内角对边的边长分别是,已知

的面积等于,求

,求的面积.

查看答案和解析>>

同步练习册答案