精英家教网 > 高中数学 > 题目详情
设an(1+
x
)n
的展开式中x项的系数(n=2,3,4,…),则
lim
n→∞
(
1
a2
+
1
a3
+…+
1
an
)
=
2
2
分析:由题意可知:an=
C
2
n
=
n(n+1)
2
,故
1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),于是
1
a2
+
1
a3
+…+
1
an
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)],
lim
n→∞
(
1
a2
+
1
a3
+…+
1
an
)
的值可求.
解答:解:∵an(1+
x
)n
的展开式中x项的系数(n=2,3,4,…),
∴an=
C
2
n
=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴是
1
a2
+
1
a3
+…+
1
an
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=2(1-
1
n+1
),
lim
n→∞
(
1
a2
+
1
a3
+…+
1
an
)
=
lim
n→∞
2(1-
1
n+1
)
=2.
故答案为:2.
点评:本题考查二项式定理的应用及极限及其运算,着重考查裂项法求和及极限求值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,当n≥2时,an(3-
x
)n
的二项展开式中x的系数,设bn=
3n
an
Tn
为数列{bn}的前n项和,则an=
1,n=1
n(n-1)
2
•3n-2,n≥2
1,n=1
n(n-1)
2
•3n-2,n≥2
,T99=
229
11
229
11

查看答案和解析>>

科目:高中数学 来源: 题型:

设an是关于x的方程xn+nx-1=0(n∈N*,x∈(0,+∞))的根.试证明:
(1)an∈(0,1);
(2)an+1<an
(3)a12+a22+…+an2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设an是关于x的方程xn+nx-1=0(n∈N*,x∈(0,+∞))的根.试证明:
(1)an∈(0,1);
(2)an+1<an
(3)a12+a22+…+an2<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设an是关于x的方程xn+nx-1=0(n∈N*,x∈(0,+∞))的根.试证明:
(1)an∈(0,1);
(2)an+1<an
(3)a12+a22+…+an2<1.

查看答案和解析>>

同步练习册答案