精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=cos2x+sinx-1$({0≤x≤\frac{π}{2}})$,则f(x)值域是$[{0,\frac{1}{4}}]$,f(x)的单调递增区间是$[{0,\frac{π}{6}}]$.

分析 由三角函数的诱导公式化简f(x)=-sin2x+sinx,然后利用换元法再结合二次函数的性质,求得函数的最值以及单调区间.

解答 解:f(x)=cos2x+sinx-1=(1-sin2x)+sinx-1=-sin2x+sinx,
设sinx=t,t∈[0,1],
∴f(x)=-t2+t=-t(t-1),当t=$\frac{1}{2}$,即sinx=$\frac{1}{2}$,x=$\frac{π}{6}$时函数f(x)取得最大值为$\frac{1}{4}$,
当t=0,即sinx=0时,函数f(x)取得最小值为0.
∴f(x)值域是$[{0,\frac{1}{4}}]$,f(x)的单调递增区间是$[{0,\frac{π}{6}}]$.
故答案为:$[{0,\frac{1}{4}}]$,$[{0,\frac{π}{6}}]$.

点评 本题考查正弦函数的值域,考查复合函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知正数a,b,c满足4a-2b+25c=0,则lga+lgc-2lgb的最大值为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=sin(\frac{π}{2}-x)$是(  )
A.奇函数,且在区间$(0,\frac{π}{2})$上单调递增B.奇函数,且在区间$(0,\frac{π}{2})$上单调递减
C.偶函数,且在区间$(0,\frac{π}{2})$上单调递增D.偶函数,且在区间$(0,\frac{π}{2})$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=[{\frac{x+1}{2}}]-[{\frac{x}{2}}](x∈N)$的值域为{0,1}.(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ln|ax|(a≠0),g(x)=x-3+sinx,则(  )
A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+cosα-2-x+cosα,x∈R,且$f(1)=\frac{{3\sqrt{2}}}{4}$.
(1)若0≤α≤π,求α的值;
(2)当m<1时,证明:f(m|cosθ|)+f(1-m)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.是否存在常数a,b,c使等式1•(n2-1)+2•(n2-22)+…+n•(n2-n2)=n2(an2-b)+c对一切n∈N*都成立?
并证明的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1、F2是其左、右焦点,A是其上顶点,且∠F1AF2=60°.
(1)求椭圆C的离心率;
(2)经过椭圆C的右焦点F2作倾斜角为45°的直线l,交椭圆C于M,N两点,且满足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,a7=8,前7项和S7=42,则其公差是$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案