精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),点A为左顶点,点B为上顶点,直线AB的斜率为
3
2
,又直线y=k(x-1)经过椭圆C的一个焦点且与其相交于点M,N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)将|MN|表示为k的函数;
(Ⅲ)线段MN的垂直平分线与x轴相交于点P,又点Q(1,0),求证:
|PQ|
|MN|
为定值.
(Ⅰ)如图,

∵直线AB的斜率为
3
2

b
a
=
3
2

又直线y=k(x-1)经过椭圆C的一个焦点,
∴交点F(1,0).
c=1
b
a
=
3
2
a2=b2+c2
,解得a2=4,b2=3.
∴椭圆C的方程为
x2
4
+
y2
3
=1

(Ⅱ)联立
y=k(x-1)
x2
4
+
y2
3
=1
,得(3+4k2)x2-8k2x+4k2-12=0.
设M(x1,y1),N(x2,y2),
x1+x2=
8k2
3+4k2
x1x2=
4k2-12
3+4k2

∴|MN|=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(
8k2
3+4k2
)2-4•
4k2-12
3+4k2
=
12(1+k2)
3+4k2

(Ⅲ)证明:线段MN的中点的横坐标为
x1+x2
2
=
4k2
3+4k2
,纵坐标为k•(
4k2
3+4k2
-1)=
-3k
3+4k2

∴线段MN的垂直平分线方程为y+
3k
3+4k2
=k(x-
4k2
3+4k2
)

取y=0,得x=
k2
3+4k2

∴P(
k2
3+4k2
,0
),
则|PQ|=1-
k2
3+4k2
=
3(1+k2)
3+4k2

|PQ|
|MN|
=
3(1+k2)
3+4k2
12(1+k2)
3+4k2
=
1
4
为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P.
(1)求证:;
(2)若⊙O的半径为,OA=OM,求MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.
(1)证明:AE是圆的切线;
(2)如果,求CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e,左、右两焦点分别为F1、F2,焦距为2c,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为(  )
A.
3
B.3C.
2
D.
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

斜率为1,过抛物线y=
1
4
x2的焦点的直线截抛物线所得的弦长为(  )
A.8B.6C.4D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=x+m与抛物线y2=8x交于A、B两点,
(1)若|AB|=10,求m的值;
(2)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左右焦点F1,F2的坐标为(-4,0)与(4,0),离心率e=2.
(1)求双曲线的方程;
(2)已知椭圆
x2
36
+
y2
20
=1
,点P是双曲线与椭圆两曲线在第一象限的交点,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知半椭圆
x2
b2
+
y2
a2
=1(y≥0)
和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆
x2
b2
+
y2
a2
=1(y≥0)
内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点M(
6
3
,-
3
3
)
时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是圆的内接三角行,的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分;②;③;④.则所有正确结论的序号是(   )
A.①② B.③④ C.①②③ D.①②④

查看答案和解析>>

同步练习册答案