分析 利用数学归纳法证明即可.
解答 证明:下面用数学归纳法来证明:
(1)先证明:$\frac{1}{2n+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$;
①当n=1时,命题显然成立;
②假设当n=k(k≥2)时,有$\frac{1}{2k+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2k-1}{2k}$,
则$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2k-1}{2k}$•$\frac{2k+1}{2(k+1)}$>$\frac{1}{2k+1}$•$\frac{2k+1}{2(k+1)}$=$\frac{1}{2(k+1)}$,
即当n=k+1时,命题也成立;
由①、②可知$\frac{1}{2n+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$;
(2)再证明:$\frac{1}{2n+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$;
①当n=1时,命题显然成立;
②假设当n=k(k≥2)时,有$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2k-1}{2k}$<$\frac{1}{\sqrt{2k+1}}$,
则$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2k-1}{2k}$•$\frac{2k+1}{2(k+1)}$<$\frac{1}{\sqrt{2k+1}}$•$\frac{2k+1}{2(k+1)}$
=$\frac{\sqrt{2k+1}}{2k+2}$
<$\frac{\sqrt{2k+1}}{2k+1}$
=$\frac{1}{\sqrt{2k+1}}$,
即当n=k+1时,命题也成立;
由①、②可知$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$;
综上所述,$\frac{1}{2n+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.
点评 本题考查不等式的证明,利用数学归纳法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 经过P点 | B. | 经过原点 | C. | 经过P点和原点 | D. | 不一定经过P点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com