精英家教网 > 高中数学 > 题目详情
12.函数f(x)的定义域为R,对于任意的x∈R,都有f(x)=f(2-x),当x≥1时,f(x)是增函数,设a=f(log23),b=f(log42),c=f(0.5-12),则实数a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

分析 由f(x)=f(2-x)可知f(x)对称轴为x=1,当x≥1时,f(x)是增函数可知自变量离对称轴越近,函数值越小,转而比较自变量与对称轴的远近关系.

解答 解:∵对于任意的x∈R,都有f(x)=f(2-x),
∴f(x)对称轴为x=1.
∴b=f(log42)=f($\frac{1}{2}$)=f($\frac{3}{2}$);
c=f(0.5-12)=f(212),
∵当x≥1时,f(x)是增函数,
∴a=f(log23)>f(log2$\sqrt{8}$)=f($\frac{3}{2}$),
∴c>a>b.
故选:C.

点评 本题考查了函数的对称性与单调性的应用,将自变量转化到同一单调区间上是本题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知点A(-2,y),B(4,9),且|$\overrightarrow{AB}$|=10,则y=1或17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,若抛物线上一动点P到A(2,$\frac{3}{2}$),F两点的距离之和的最小值为4,求抛物线C的方程及其准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若实数x、y满足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$且z=2x+4y的最小值为-14,则常数k的值为(  )
A.10B.$\frac{19}{3}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b?α,则α∥b;③若a∥α,则a平行于α内所有的直线;④若a∥α,a∥b,b?α,则b∥α.其中正确命题的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的图象平移φ个单位后函数图象关于y轴对称,则|φ|的最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ln|x|-cosx,则f(-3),f($\frac{π}{2}$),f(π)的大小关系是(  )
A.f($\frac{π}{2}$)<f(-3)<f(π)B.f($\frac{π}{2}$)<f(π)<f(-3)C.f(-3)<f($\frac{π}{2}$)<f(π)D.f(-3)<f(π)<f($\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数.且f(2)=0.
(1)求f(-2)的值;
(2)若f(1og2x)<f(2),求x的取值范围;
(3)若g(x)=$\sqrt{2}$asin(2x-$\frac{π}{3}$)+1-a,x∈[$\frac{7π}{24}$,$\frac{π}{2}$],a∈R,是否存在实数a使得f[g(x)]>0恒成立?若存在,求a的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若角A是锐角,那么角A的余弦值是(  )
A.大于零B.小于零C.等于零D.都不对

查看答案和解析>>

同步练习册答案