A. | (-∞,-2] | B. | (-$\frac{1}{8}$,+∞) | C. | (-2,-$\frac{1}{8}$) | D. | (-2,+∞) |
分析 求出函数的导数,问题转化为a>${(-\frac{1}{{2x}^{2}})}_{min}$,而g(x)=-$\frac{1}{{2x}^{2}}$在($\frac{1}{2}$,2)递增,求出g(x)的最小值,从而求出a的范围即可.
解答 解:f′(x)=$\frac{1}{x}$+2ax,
若f(x)在区间($\frac{1}{2}$,2)内存在单调递增区间,
则f′(x)>0在x∈($\frac{1}{2}$,2)有解,
故a>${(-\frac{1}{{2x}^{2}})}_{min}$,
而g(x)=-$\frac{1}{{2x}^{2}}$在($\frac{1}{2}$,2)递增,
g(x)>g($\frac{1}{2}$)=-2,
故a>-2,
故选:D.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{5π}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{35}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x+1)2+(y+2)2=1 | B. | (x-1)2+(y-2)2=1 | C. | (x-1)2+(y+2)2=1 | D. | (x+1)2+(y-2)2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{5}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com