考点:两角和与差的余弦函数
专题:计算题,三角函数的求值
分析:(1)根据角的范围和同角三角函数关系式先求得:sin(x+y),sin(x-y)的值,从而化简所求cos2x=cos[(x+y)+(x-y)]=cos(x+y)cos(x-y)-sin(x+y)sin(x-y),即可代入求值.
(2)由cos(x+y)=
,cos(x-y)=
,可得:
| cosxcosy-sinxsiny= | cosxcosy+sinxsiny= |
| |
即可解得所求.
解答:
解:(1)由
0<x<,<y<得
<x+y<π,-<x-y<故
sin(x+y)=.(3分)
而:若
0<x-y<,则
cos(x-y)∈(,1),此时
cos(x-y)=不可能.故有:
-
<x-y≤0,此时sin(x-y)=-
(4分)
故cos2x=cos[(x+y)+(x-y)]=cos(x+y)cos(x-y)-sin(x+y)sin(x-y)=
. (5分)
(2)cos(x+y)=
,cos(x-y)=
,
可得:
| cosxcosy-sinxsiny= | cosxcosy+sinxsiny= |
| |
(7分)
解得:
,可得tanxtany=
.(10分)
点评:本题主要考察了两角和与差的余弦函数公式的应用,属于基础题.