精英家教网 > 高中数学 > 题目详情
10.已知数列{an}中,a1=1,2a1,Sn+1,Sn成等差数列.
(1)求S1,S2,S3,S4
(2)猜想通项Sn,并用数学归纳法证明.

分析 (1)通过2a1,Sn+1,Sn成等差数列可知Sn+1=$\frac{1}{2}$Sn+a1,利用1=1代入计算即得结论;
(2)通过(1)猜想通项Sn=$\frac{{2}^{n}-1}{{2}^{n-1}}$,利用数学归纳法证明即可.

解答 解:(1)∵2a1,Sn+1,Sn成等差数列,
∴Sn+1=$\frac{1}{2}$Sn+a1
又∵a1=1,
∴S1=a1=1,
S2=$\frac{1}{2}$S1+a1=$\frac{3}{2}$,
S3=$\frac{1}{2}$S2+a1=$\frac{7}{4}$,
S4=$\frac{1}{2}$Sn+a1=$\frac{15}{8}$;
(2)猜想通项Sn=$\frac{{2}^{n}-1}{{2}^{n-1}}$.
证明如下:
①当n=1时,命题显然成立;
②假设当n=k(k≥2)时,有Sk=$\frac{{2}^{k}-1}{{2}^{k-1}}$,
则Sk+1=$\frac{1}{2}$Sk+a1
=$\frac{1}{2}$•$\frac{{2}^{k}-1}{{2}^{k-1}}$+1
=$\frac{{2}^{k}-1+{2}^{k}}{{2}^{k}}$
=$\frac{{2}^{k+1}-1}{{2}^{k}}$,
即当n=k+1时,命题也成立;
由①、②可知Sn=$\frac{{2}^{n}-1}{{2}^{n-1}}$.

点评 本题考查数列的通项及前n项和,考查数学归纳法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角B=60°,a=4$\sqrt{2},b=4\sqrt{3}$,那么角A=(  )
A.30°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)满足对于定义域内任意的实数x,y都有f(x+y)=$\frac{f(x)+f(y)}{1+f(x)f(y)}$,且当x>0时,-1<f(x)<0
(1)判断f(x)的奇偶性并证明;
(2)判断并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x2-2x-15=0},集合B={x2+2ax+a2-$\frac{3}{2}$a=0}.
(1)若A∩B={-3},求a的值;
(2)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆$\frac{{x}^{2}}{2}$+y2=1在y轴正半轴上的顶点为M,右焦点为F,延长线段MF与椭圆交于N.
(1)求直线MF的方程;
(2)若该椭圆长轴的两端点为A,B,求四边形AMBN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x∈[-$\frac{π}{6}$,$\frac{π}{4}$],则f(x)=$\frac{3si{n}^{2}x-2}{sinxcosx+co{s}^{2}{x}^{\;}}$的最大值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的双曲线标准方程:
(1)a=12,焦点为F1(-13,0),F2(13,0);
(2)b=3,焦点为F1(0,-3$\sqrt{3}$),F2(0,3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=1og2$\frac{3x-1}{3x+1}$.
(1)求函数的定义域;
(2)证明:函数是奇函数;
(3)证明:函数中其定义域上的每个区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次函数y=ax2+bx+c(a≠0).
当a>0时,值域为[$\frac{4ac-{b}^{2}}{4a}$,+∞);
当a<0时,值域为(-∞,$\frac{4ac-{b}^{2}}{4a}$].

查看答案和解析>>

同步练习册答案