精英家教网 > 高中数学 > 题目详情
7.已知命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题,在这四个命题中假命题有2个.

分析 根据命题的等价关系,可先判断原命题与逆命题的真假.

解答 解:若a>b,c2=0,则ac2=bc2
∴原命题若a>b,则ac2>bc2为假;
∵逆否命题与原命题等价,
∴逆否命题也为假.
 原命题的逆命题是:若ac2>bc2,则c2≠0且c2>0,则a>b,
∴逆命题为真;
 又∵逆命题与否命题等价,
∴否命题也为真;
综上,四个命题中,真命题的个数为2,
故答案为:2个.

点评 本题考查命题的真假判断,根据命题的等价关系,四个命题中,真(假)命题的个数必为偶数个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.两种大小不同的钢板可按下表截成A,B,C三种规格成品:
A规格B规格C规格
第一种钢板211
第二种钢板124
某建筑工地至少需A,B,C三种规格的成品分别为6,6,8块,问怎样截这两种钢板,可得所需三种规格成品,且所用总钢板张数最小,最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y∈R+,满足xy=$\frac{x-4y}{x+y}$,则y的最大值为$\sqrt{5}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$(2x+2-x);
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,y>0,x+$\frac{1}{x}$+$\frac{y}{2}$+$\frac{8}{y}$=10.则2x+y的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.AB是抛物线y=x2的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设p:x<3,q:-1<x<3,则p是q成立的必要不充分条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的函数f(x)是满足f(x)+f(-x)=0,在(-∞,0)上$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(5)=0,则使f(x)<0的x取值范围是(-5,0)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在梯形ABCD中,若E,F分别为腰AB,DC的三等分点,且|$\overrightarrow{AD}$|=2,|$\overrightarrow{BC}$|=5,求|$\overrightarrow{EF}$|.

查看答案和解析>>

同步练习册答案