精英家教网 > 高中数学 > 题目详情

数学公式=(1,1),数学公式=(1,0),数学公式满足数学公式=0,且数学公式=数学公式数学公式>0
(I)求向量数学公式
(II)若映射数学公式
①求映射f下(1,2)原象;
②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由.

解:(I)设,则

=(1,-1)

(II)①x(1,1)+y(1,-1)=(1,2)

∴原象是
②假设l存在,设其方程为y=kx+b(k≠0),
=(x+y,x-y)
点(x+y,x-y)在直线上
∴x-y=k(x+y)+b
即(1+k)y=(1-k)x-b与y=kx+b表示同一直线,
必有-b=b,=k,
解可得
∴直线?存在其方程为
分析:(I)设,由已知得到关于x、y的方程组,求出x、y,即求得向量
(II)根据映射,①求映射f下(1,2)原象,列出方程,解方程即可;②存在性命题的探讨,转化为(1+k)y=(1-k)x-b与y=kx+b表示同一直线,对应系数相等,求得直线方程.
点评:考查平面向量的坐标运算和数量积,属基础题,对映射的定义,增加了试题新颖和综合,体现了转化和方程的思想方法,很好.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知空间整数点的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)则(1,5,1)是这个序列中的第
22
22
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•武汉模拟)已知函数f'(x)、g'(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示:
①若f(1)=1,则f(-1)=
1
1

②设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为
h(0)<h(1)<h(-1)
h(0)<h(1)<h(-1)
.(用“<”连接)

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省景德镇市高三(上)11月月考数学试卷(文科)(解析版) 题型:填空题

已知空间整数点的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)则(1,5,1)是这个序列中的第    个.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省景德镇市高三(上)第一次质检数学试卷(理科)(解析版) 题型:填空题

已知空间整数点的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)则(1,5,1)是这个序列中的第    个.

查看答案和解析>>

同步练习册答案