【题目】已知椭图:的右顶点与抛物线:的焦点重合,椭圆的离心率为,过椭圆的右焦点且垂直于轴的直线截抛物线所得的弦长为.
(1)求椭圆和抛物线的方程;
(2)过点的直线与椭圆交于,两点,点关于轴的对称点为.当直线绕点旋转时,直线是否经过一定点?请判断并证明你的结论.
【答案】(1), ;(2)是,证明见解析.
【解析】
(1)利用椭圆的顶点与抛物线的焦点坐标相同,椭圆的离心率,列出方程组,求出,,即可得到椭圆方程抛物线方程;
(2)把直线方程与椭圆方程联立可得根与系数的关系,设,,,,,,求得直线的方程,化简整理,由直线恒过定点的求法,可得所求定点.
解:(1)设椭圆的半焦距为,依题意,可得,则:,
代入,得,即,所以,
则有,.
所以椭圆的方程为,抛物线的方程为.
(2)依题意,当直线的斜率不为0时,设其方程为,
联立,得,
设,,则,由,解得或,
且,,
根据椭圆的对称性可知,若直线过定点,此定点必在轴上,设此定点为,
因斜率,得,即,
即,即,
即,得,
由的任意性可知.
当直线的斜率为0时,直线的方程即为,也经过点,
所以当或时,直线恒过一定点.
科目:高中数学 来源: 题型:
【题目】关于函数,下列判断正确的是( )
A. 有最大值和最小值
B. 的图象的对称中心为()
C. 在上存在单调递减区间
D. 的图象可由的图象向左平移个单位而得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知鲜切花的质量等级按照花枝长度进行划分,划分标准如下表所示.
花枝长度 | |||
鲜花等级 | 三级 | 二级 | 一级 |
某鲜切花加工企业分别从甲乙两个种植基地购进鲜切花,现从两个种植基地购进的鲜切花中分别随机抽取30个样品,测量花枝长度并进行等级评定,所抽取样品数据如图所示.
(1)根据茎叶图比较两个种植基地鲜切花的花枝长度的平均值及分散程度(不要求计算具体值,给出结论即可);
(2)若从等级为三级的样品中随机选取2个进行新产品试加工,求选取的2个全部来自乙种植基地的概率;
(3)根据该加工企业的加工和销售记录,了解到来自乙种植基地的鲜切花的加工产品的单件利润为4元;来自乙种植基地的鲜切花的加工产品的单件成本为10元,销售率(某等级产品的销量与产量的比值)及单价如下表所示.
三级花加工产品 | 二级花加工产品 | 一级花加工产品 | |
销售率 | |||
单价/(元/件) | 12 | 16 | 20 |
由于鲜切花加工产品的保鲜特点,未售出的产品均可按原售价的50%处理完毕.用样本估计总体,如果仅从单件产品的利润的角度考虑,该鲜切花加工企业应该从哪个种植基地购进鲜切花?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年月日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量在与之间,日需求量(件)的频率分布如下表所示:
己知其成本为每件元,售价为每件元若供大于求,则每件需降价处理,处理价每件元.
(1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示);
(2)在(1)的条件下,写出和的关系式,并判断为何值时,日利润的均值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“”是“点到直线的距离为3”的充要条件
B.直线的倾斜角的取值范围为
C.直线与直线平行,且与圆相切
D.离心率为的双曲线的渐近线方程为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量的观测值,参照附表,得到的正确结论是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握认为“爱好该项运动与性别有关”
B.有97.5%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,若满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界
(1)设,判断在上是否是有界函数,若是,说明理由,并写出所有上界的值的集合;若不是,也请说明理由.
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱的三个顶点A,C,E处分别用平面BFM,平面BDO,平面DFN截掉三个相等的三棱锥,,,平面BFM,平面BDO,平面DFN交于点P,就形成了蜂巢的结构.如图,设平面PBOD与正六边形底面所成的二面角的大小为,则有:( )
A.B.
C.D.以上都不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com