精英家教网 > 高中数学 > 题目详情

已知a>1,设命题P:a(x-2)+1>0,命题Q:(x-1)2>a(x-2)+1.试寻求使得P、Q都是真命题的x的集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:设函数y=
2x-2ax≥2a
2ax<2a
对任意的x,恒有y>1.若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数f(x)=ax在R上是增函数,q:不等式x+|x-2a|>1的解集为R,
(1)若函数y=f(x+1)恒过定点M(1,4),求a
(2)若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调增;命题q:不等式ax2-ax+1>0对任意实数x恒成立.若p∧q假,p∨q真,则a的取值范围为
(0,1]∪[4,+∞)
(0,1]∪[4,+∞)

查看答案和解析>>

同步练习册答案