精英家教网 > 高中数学 > 题目详情
14.已知{an}是公比小于1的等比数列,且a2=2,a1+a3=5,设Tn=a1a2+a2a3+a3a4+…+anan+1,则(  )
A.12≤Tn<16B.8≤Tn<16C.12≤Tn<$\frac{32}{3}$D.8≤Tn<$\frac{32}{3}$

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:{an}是公比q小于1的等比数列,
∵a2=2,a1+a3=5,
∴$\left\{\begin{array}{l}{{a}_{1}q=2}\\{{a}_{1}+{a}_{1}{q}^{2}=5}\end{array}\right.$,q<1,
解得q=$\frac{1}{2}$,a1=4.
∴${a}_{n}=4×(\frac{1}{2})^{n-1}$=23-n
∴anan+1=23-n•22-n=25-2n
设Tn=a1a2+a2a3+a3a4+…+anan+1=23+21+2-1+…+25-2n=$\frac{8(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{32}{3}(1-\frac{1}{{4}^{n}})$,
∴8<Tn<$\frac{32}{3}$.
故选:D.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|2x+1|-|x-2|.
(Ⅰ)求不等式f(x)≤2的解集;
(Ⅱ)若不等式f(x)≥t2-t在x∈[0,1]时有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x+k•2-x,k∈R
①若函数f(x)为奇函数,求实数k的值.
②若k>0时f(x)min=2,求函数g(x)=ksinx+cosx的值域.
对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)等比数列{an}中,已知a1+a2=324,a3+a4=36,求a5+a6
(2)已知数列{an}为等差数列,且a5=11,a8=5,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线2x+4y-3=0的斜率为(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义$a⊕b=\left\{\begin{array}{l}ab(ab≥0)\\ \frac{a}{b}(ab<0)\end{array}\right.$,设函数f(x)=lnx⊕x,若数列{an}是公比大于0的等比数列,且a1008=1,f(a1)+f(a2)+f(a3)+…+f(a2015)+f(a2016)=a2016,则a2016=e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数$f(x)={x^3}-b{x^2}+\frac{1}{2}$有且仅有两个不同零点,则b的值为(  )
A.2B.$\frac{3}{2}$C.$\frac{\root{3}{2}}{2}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某种型号的汽车,如果速度在100千米/小时以内时,在高速公路上它的刹车距离s(米)与汽车的车速x(千米/小时)有如下关系:s=0.005x2+0.1x(x<100).在某次交通事故中,测得肇事汽车刹车距离大于40米,问这辆汽车的车速至少为每小时多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a>0,b<0,则下列不等式中成立的是(  )
A.$\frac{b}{a}>0$B.a-b>0C.ab>0D.$\frac{1}{b}>\frac{1}{a}$

查看答案和解析>>

同步练习册答案