精英家教网 > 高中数学 > 题目详情

【题目】已知正方形ABCDEF分别为ABCD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为.

1)证明:点A在平面BCDE内的射影G在直线EF上;

2)求角的正弦值.

【答案】(1)见解析;(2).

【解析】

1)过点平面,垂足为,连接.证明的垂直平分线上,则点在平面内的射影在直线上,

2)以点为坐标原点,以所在直线为轴,所在直线为轴,过点作平行于的向量为轴建立空间直角坐标系.设正方形的边长为,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得角的正弦值.

1)证明:过点AAG⊥平面BCDE,垂足为G,连接GCGD.

因为△ACD为等边三角形,所以AC=AD,所以点GCD的垂直平分线上.

又因为EFCD的垂直平线,所以点A在平面BCDE内的射影G在直线EF.

另证:过点AAGEF,再证AGCD,从而证得AG⊥平面BCDE

即点A在平面BCDE内的射影G在直线EF

2)解:以G为坐标原点,GA所在直线为z轴,GF所在直线为y轴,过点G作平行于DC的直线为x轴建立空间直角坐标系.

设正方形ABCD的边长为2a,连接AF

所以

设平面的一个法向量为,则

,得,又平面的一个法向量

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中错误的是(

A.的图像关于点对称B.的图像关于直线对称

C.的最大值为D.是周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为阿当数列”.

1)若数列阿当数列,且,求实数的取值范围;

2)是否存在首项为1的等差数列阿当数列,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.

3)已知等比数列的每一项均为正整数,且阿当数列,当数列不是阿当数列时,试判断数列是否为阿当数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年起,福建省高考将实行“3+1+2”新高考.“3”是统一高考的语文、数学和英语三门;“1”是选择性考试科目,由考生在物理、历史两门中选一门;“2”也是选择性考试科目,由考生从化学、生物、地理、政治四门中选择两门,则某考生自主选择的“1+2”三门选择性考试科目中,历史和政治均被选择到的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意实数对,存在,使成立,则称集合垂直对点集” .给出下列四个集合:

.

其中是垂直对点集的序号是( .

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCDEF分别为ABCD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为.

1)证明:点A在平面BCDE内的射影G在直线EF上;

2)求角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数同时满足下列两个条件:①对任意的恒有成立;②当时,.记函数,若函数恰有两个零点,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若为单调函数,求a的取值范围;

2)若函数仅一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点为点在平面上的正投影,则记.如图,在棱长为的正方体中,记平面,平面,点是棱上一动点(与不重合).给出下列三个结论:

①线段长度的取值范围是

②存在点使得平面

③存在点使得.

其中,所有正确结论的序号是( )

A.①②③B.②③C.①③D.①②

查看答案和解析>>

同步练习册答案