精英家教网 > 高中数学 > 题目详情

【题目】已知O点为坐标原点,且点A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若 ,求tanθ的值;
(2)若 =1,求sinθcosθ的值.

【答案】
(1)解:∵A(1,0),B(0,1),C(2sinθ,cosθ),

=(2sinθ﹣1,cosθ), =(2sinθ,cosθ﹣1),

∴(2sinθ﹣1)2+cos2θ=4sin2θ+(cosθ﹣1)2

∴化为2sinθ=cosθ,

∴tanθ=


(2)解:∵ =(1,0)+2(0,1)=(1,2),

=1,

∴2sinθ+2cosθ=1,

∴sinθ+cosθ=

∴sin2θ+cos2θ+2sinθcosθ=

∴sinθcosθ=


【解析】(1)利用向量的坐标运算、数量积的运算性质即可得出;(2)由数量积的坐标运算可得sinθ+cosθ= ,与sin2θ+cos2θ=1联立即可解出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点列An(xn , 0),n∈N* , 其中x1=0,x2=1.A3是线段A1A2的中点,A4是线段A2A3的中点,…,An+2是线段AnAn+1的中点,…设an=xn+1﹣xn . (Ⅰ)写出xn与xn1、xn2(n≥3)之间的关系式并计算a1 , a2 , a3
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若向量 ,且 ,若 ,则β﹣α的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,a2= ,且an+1= (n≥2)
(1)求a3 , a4
(2)猜想an的表达式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=﹣tan2x,有下列说法: ①f(x)的定义域是{x∈R|x≠ +kπ,k∈Z}②f(x)是奇函数 ③在定义域上是增函数 ④在每一个区间(﹣ + + )(k∈Z)上是减函数 ⑤最小正周期是π其中正确的是(
A.①②③
B.②④⑤
C.②④
D.③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,使电路接通,开关不同的开闭方式有(

A.11种
B.20种
C.21种
D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为
(1)求这支篮球队首次获胜前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好获胜3场的概率;
(3)求这支篮球队在6场比赛中获胜场数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,△SAD是正三角形,P,Q分别是棱SC,AB的中点,且平面SAD⊥平面ABCD.
(1)求证:PQ∥平面SAD;
(2)求证:SQ⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】D表示不等式组所确定的平面区域,在D内存在 无数个点落在yax+2)上,则a的取值范围是 (  )

A. R B. 1 C. 0 D. 0][+∞

查看答案和解析>>

同步练习册答案