精英家教网 > 高中数学 > 题目详情
若函数y=f(x)在R上有定义,对于给定的正数M,定义函数fM(x)=
f(x),f(x)≥M
M,f(x)<M
,若给定函数f(x)=ex-1,当M=1时,fM(x)的单调递增区间是(  )
分析:先求出fM(x)的表达式,由表达式易求其单调增区间.
解答:解:由f(x)=ex-1≥1,得x≥ln2,
因此,当x≥ln2时,fM(x)=ex-1;
当x<ln2时,fM(x)=1,即fM(x)=
ex-1,x≥ln2
1,x<ln2

所以fM(x)的单调递增区间时[ln2,+∞),
故选C.
点评:本题考查函数单调性,考查分段函数的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量t,y满足关系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,变量t,x满足关系式t=ax,变量y,x满足函数关系式y=f(x).
(1)求函数y=f(x)表达式;
(2)若函数y=f(x)在[2a,3a]上具有单调性,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若函数y=f(x)在[em,+∞)(m∈Z)上有零点,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-3a.
(Ⅰ)若函数y=f(x)在(-∞,1)上是增函数,求实数a的取值范围;
(Ⅱ)当函数f(x)在[1,2]上的最大值为4时,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x)=x2-2ax+3
(1)求函数y=f(x)的解析式
(2)若函数y=f(x)在[
12
,8]上的最小值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在(0,+∞)上的导函数为f′(x),且不等式xf′(x)>f(x)恒成立,又常数a,b满足a>b>0,则下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步练习册答案