精英家教网 > 高中数学 > 题目详情
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
(1)
(2)

试题分析:(1)依题意,设椭圆的方程为.
构成等差数列,
, .
,.
椭圆的方程为   
(2) 将直线的方程代入椭圆的方程中,
 
由直线与椭圆仅有一个公共点知,,

化简得: 
,
(法一)当时,设直线的倾斜角为,
,
,      
,时,,,.
时,四边形是矩形, 
所以四边形面积的最大值为 
(法二)


四边形的面积,                        
                                                   
当且仅当时,,故
所以四边形的面积的最大值为 
点评:主要是考查了椭圆方程,以及直线与椭圆的位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知过椭圆的左顶点作直线轴于点,交椭圆于点,若是等腰三角形,且,则椭圆的离心率为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆具有 (   )
A.相同的长轴长B.相同的焦点
C.相同的离心率D.相同的顶点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点的动直线相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率满足

(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

同步练习册答案