精英家教网 > 高中数学 > 题目详情
已知
m
=(cosωx,sinωx)(ω>0),
n
=(1,
3
)
,若函数f(x)=
m
n
的最小正周期是2,则f(1)=
 
分析:利用两个向量的数量积公式、两角和的正弦公式,可得f(x)=2sin(
π
6
+ωx),根据周期的值求出ω,即得f(x)
=2sin(
π
6
+πx),则f(1)=2sin(
π
6
)=-2sin
π
6
,运算求得结果.
解答:解:由题意可得f(x)=
m
n
=cosωx+
3
sinωx=2sin(
π
6
+ωx),故最小正周期是
ω
=2,
∴ω=π,故f(x)=2sin(
π
6
+πx),则f(1)=2sin(
π
6
)=-2sin
π
6
=-1,
故答案为:-1.
点评:本题考查两个向量的数量积公式的应用,两角和的正弦公式,正弦函数的周期性,求出f(x)=2sin(
π
6
+πx),是解题的
关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•潍坊二模)已知
m
=(cos?x,sin?x),
n
=(cos?x,2
3
cos?x-sin?x)
,?>0,函数f(x)=
m
n
+|
m
|
,x1,x2是集合M={x|f(x)=1}中任意两个元素,且|x1-x2|的最小值为
π
2

(1)求?的值.
(2)在△ABC中,a,b,c分别是A,B,C的对边.f(A)=2,c=2,S△ABC=
3
2
,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)已知m=(cosωx+sinωx,
3
cosωx)
,n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m•n,且f(x)的对称中心到f(x)对称轴的最近距离不小于
π
4

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cos(x+
3
),cos
x
2
),
n
=(1,2cos
x
2
)

(I)设函数g(x)=
m
n
,将函数g(x)的图象向右平移
π
6
单位,再将所得图象上的所有点的纵坐标不变,横坐标缩短到原来的
1
2
,得到函数f(x),求函数f(x)的单调减区间;
(II)设△ABC的内角A,B,C的对边分别为a,b,c,若B为锐角,且f(B)=1,b=1,c=
3
,求a.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知
m
=(cosωx,sinωx)(ω>0),
n
=(1,
3
)
,若函数f(x)=
m
n
的最小正周期是2,则f(1)=______.

查看答案和解析>>

同步练习册答案