【题目】在△ABC中,a,b,c分别为角A,B,C所对的边,角C是钝角,且sinB= .
(1)求角C的值;
(2)若b=2,△ABC的面积为 ,求c的值.
科目:高中数学 来源: 题型:
【题目】一辆汽车在某段路程中的行驶速率与时间的关系如图所示.
(1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1 , y1)、B(x2 , y2)两点间的“直角距离”为:D(AB)=|x1﹣x2|+|y1﹣y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知锐角△ABC的三内角A,B,C所对的边分别是a,b,c,且2csinB= b.
(1)求角C的大小;
(2)若边c=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{bn}的前n项和是Sn , 且bn=1﹣2Sn , 又数列{an}、{bn}满足点{an , 3 }在函数y=( )x的图象上.
(1)求数列{an},{bn}的通项公式;
(2)若cn=anbn+ ,求数列{an}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论: ①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f(3)<f(﹣1);
②函数y=log (x2﹣2x)的单调递增减区间是(﹣∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2 , 则当x<0时,f(x)=﹣x2;
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是(请将所有正确结论的序号填在横线上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.
(3)设 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com