分析 (Ⅰ)消去参数求曲线C的普通方程,利用极坐标方程与直角坐标方程的互化方法,可得直线l的直角坐标方程
(Ⅱ)点M为曲线C上任意一点,若点M到直线l的距离的最大值为4$\sqrt{2}$,利用参数,求得点M到直线l的距离,即可求b的值.
解答 解:(Ⅰ)曲线C的参数方程为$\left\{\begin{array}{l}{x=5cosφ}\\{y=bsinφ}\end{array}\right.$(φ为参数,0<b<5),普通方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{{b}^{2}}$=1(0<b<5),
直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$c,直线l的直角坐标方程y=x+c;
(Ⅱ)设M(5cosφ,bsinφ),
点M到直线l的距离d=$\frac{|5cosφ-bsinφ+c|}{\sqrt{2}}$=$\frac{|\sqrt{25+{b}^{2}}sin(φ+θ)+c|}{\sqrt{2}}$,
∴$\frac{|\sqrt{50-{c}^{2}}+c|}{\sqrt{2}}$=4$\sqrt{2}$,∴c=1或7(舍去),
∴$b=2\sqrt{6}$.
点评 本题主要考查把极坐标方程、参数方程化为直角坐标方程的方法,点到直线的距离公式、辅助角公式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{3}$ | B. | $-\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com