精英家教网 > 高中数学 > 题目详情
以椭圆的右焦点F2为圆心的圆恰好过椭圆的中心,交椭圆于点M、N,椭圆的左焦点为F1,且直线MF1与此圆相切,则椭圆的离心率e为(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2
分析:先根据题意得|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c,在直角三角形MF1F2中 根据勾股定理可知|MF1|2+|MF2|2=|F1F2|2,进而得到关于a和c的方程,把方程转化成关于
c
a
即e的方程,进而求得e.
解答:解:由题意得:|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c
直角三角形MF1F2
|MF1|2+|MF2|2=|F1F2|2
即(2a-c)2+c2=4c2
整理得2a2-2ac-c2=0
a=(2c+2c根号3)/4=(c+c根号3)/2=c(1+根号3)/2
等式两边同除以a2,得
c2
a2
+2•
c
a
-2=0
即e2+2e-2=0,解得e=
3
-1或-
3
-1(排除)
故e=
3
-1
故选A.
点评:本题主要考查了椭圆性质.要利用好椭圆的第一和第二定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心的圆恰好过椭圆的中心,交椭圆于点M、N,椭圆的左焦点为F1,且直线MF1与此圆相切,则椭圆的离心率e为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆中心O并交椭圆于点M,N,若过椭圆左焦点F1的直线MF1是圆F2的切线,则椭圆的离心率(  )
A、
3
B、
3
+1
C、
3
-1
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则椭圆的离心率为
3
-1
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆过椭圆的中心O并交于椭圆于M、N,若过椭圆左焦点F1的直线MF1是圆的切线,则椭圆的右准线l与圆F2的位置关系是
相交
相交

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心O并交椭圆于点M、N,若过椭圆的左焦点F1的直线MF1是圆F2的切线,则右准线与圆F2(  )

查看答案和解析>>

同步练习册答案