精英家教网 > 高中数学 > 题目详情
在△ABC中,若B=30°,则cosAsinC的取值范围是(  )
A、[-1,1]
B、[-
1
2
1
2
]
C、[-
1
4
3
4
]
D、[-
3
4
1
4
]
分析:先利用和差化积公式对cosAsinC展开,化简整理求得cosAsinC=
1
4
-
1
2
sin(A-C),进而利用正弦函数的性质求得sin(A-C)的范围,进而求得cosAsinC的范围.
解答:解:cosAsinC=
1
2
[sin(A+C)-sin(A-C)]=
1
2
[sin(π-B)-sin(A-C)]=
1
4
-
1
2
sin(A-C)
因为-1≤sin(A-C)≤1
所以-
1
4
1
4
-
1
2
sin(A-C)≤
3
4

即cosAsinC的取值范围为[-
1
4
3
4
]

故选C.
点评:本题主要考查了和差化积公式的应用,正弦函数的值域问题等.考查了学生对三角函数基础知识的掌握和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若b=5,C=
π
4
a=2
2
,则sinA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若∠B=135°,AC=
2
,则三角形外接圆的半径是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若B=2A,a:b=1:
3
,则A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若B、C的对边边长分别为b、c,B=45°,c=2
2
,b=
4
3
3
,则C等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b=12,A=30°,B=120°,则a=(  )

查看答案和解析>>

同步练习册答案