精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形中, 交于点,现将沿折起得到三棱锥 分别是 的中点.

(1)求证:

(2)若三棱锥的最大体积为,当三棱锥的体积为,且二面角为锐角时,求二面角的正弦值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)根据折叠前几何关系得 ,再根据线面垂直判定定理得平面,即得;(2)先确定三棱锥的取最大体积的条件:三棱锥的高为,再根据三棱锥体积公式得三棱锥的体积为时条件: 平面,最后根据等体积法求三棱锥的体积.

试题解析:(1)依题意易知 ,∴平面

又∵平面,∴.

(2)当体积最大时三棱锥的高为,当体积为时,高为

中, ,作,∴,∴

为等边三角形,∴重合,即平面

易知.

平面,∴,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 中点,且平面 .已知.

(1)求直线所成角;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额如下表:

商店名称

A

B

C

D

E

销售额x/千万元

3

5

6

7

9

利润额y/百万元

2

3

3

4

5

1)画出散点图,观察散点图,说明两个变量是否线性相关;

2)用最小二乘法计算利润额y对销售额x的线性回归方程;

3)当销售额为4千万元时,估计利润额的大小.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】墙上有一壁画,最高点处离地面米,最低点处离地面米,距离墙米处设有防护栏,观察者从离地面高米的处观赏它.

1)当时,观察者离墙多远时,视角最大?

2)若,视角的正切值恒为,观察者离墙的距离应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆内有一点,为圆上一动点,线段的垂直平分线与的连线交于点

(Ⅰ)求点的轨迹方程.

(Ⅱ)若动直线与点的轨迹交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)求的值;

(Ⅱ)写出函数的单调递减区间(无需证明) ;

(Ⅲ)若实数满足,则称的二阶不动点,求函数的二阶不动点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了8名观众作问卷调查,得分统计结果如图所示:

1)计算甲、乙两地被抽取的观众问卷的平均得分;

(2)计算甲、乙两地被抽取的观众问卷得分的方差;

(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为 ,…, ,测量其长度(单位: ),得到下表中数据:

编号

长度

1.49

1.46

1.51

1.51

1.53

1.51

1.47

1.51

其中长度在区间内的零件为一等品.

(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;

(2)从一等品零件中,随机抽取2个.

①用零件的编号列出所有可能的抽取结果;

②求这2个零件长度相等的概率.

查看答案和解析>>

同步练习册答案