精英家教网 > 高中数学 > 题目详情
(2012•眉山一模)设{bn}是等差数列,b1+b2+b3=15,b3+b5+b7=33,Sn是数列{bn}前n项和,令Tn=
4Sn+7
bn
,(n∈N*),则Tn
的最小值为(  )
分析:利用等差数列的性质化简已知的等式,得出b2及b5的值,再利用等差数列的性质,根据b2及b5的值,求出公差d的值,由b2及d的值,利用等差数列的通项公式表示出数列{bn}的通项公式,进而确定出数列{bn}前n项和Sn,将得出的bn及Sn代入到Tn中,化简后表示出Tn,利用基本不等式得出Tn的大于6,根据n为正整数,即可得出n=1时Tn的最小值.
解答:解:由等差数列的性质知:b1+b2+b3=3b2=15,b3+b5+b7=3b5=33,
∴b2=5,b5=11,
∴d=
11-5
5-2
=2,
∴bn=5+2(n-2)=2n+1,Sn=n2+2n,
∴Tn=
4n28n+7
2n+1
=(2n+1)+
4
2n+1
+2>6,
∴当2n+1=3,即n=1时,Tn的最小值为T1=
19
3

故选B
点评:此题考查了等差数列的性质,等差数列的通项公式,以及等差数列的求和公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山一模)不等式
2xx-3
<1
的解集是
{x|-3<x<3}
{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)在对我市普通高中学生某项身体素质的测试中.测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.8,则ξ在(0,1)内取值的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)在地球北纬45°圈上有A、B两点,点A在西经l0°,点B在东经80°,设地球半径为R,则A、B两点的球面距离为
πR
3
πR
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)已知正项数列{an}满足a1=1,
a
2
n+1
-
a
2
n
-2an+1-2an=0(n∈N*)

(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若Cn+1-Cn=an+1,且C1=1,求{Cn}的通项公式;
(Ⅲ)设bn=
an+1
2n
Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)函数f(x)=ax3-6ax2+3bx+b,其图象在x=2处的切线方程为3x+y-11=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若关于x的方程f(x)-m=0在[
12
,4]
上恰有两个不等实根,求实数m的取值范围;
(Ⅲ)函数y=f(x)图象是否存在对称中心?若存在,求出对称中以后坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案