精英家教网 > 高中数学 > 题目详情
1.复数z=$\frac{1-2i}{i}$的虚部是-1.

分析 直接利用复数的除法的运算法则化简求解即可.

解答 解:$z=\frac{1-2i}{i}=\frac{i+2}{-1}=-2-i$,∴z的虚部为-1.
故答案为:-1.

点评 本题考查复数的代数形式的混合运算,复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函数f(x)=$\overrightarrow a•\overrightarrow b$(m∈R)的图象过点M($\frac{π}{12}$,0).
(Ⅰ)求m的值以及函数f(x)的最小正周期和单调增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,若ccosB+bcosC=2acosB,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数$y={x^{{a^2}-a}}$在区间(0,+∞)上是减少的,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(-x)≠-f(x),则称该函数是“X-函数”.
(Ⅰ)分别判断下列函数:①y=2x;②y=x+1; ③y=x2+2x-3是否为“X-函数”?(直接写出结论)
(Ⅱ)若函数f(x)=sinx+cosx+a是“X-函数”,求实数a的取值范围;
(Ⅲ)已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x∈A}\\{x,x∈B}\end{array}\right.$是“X-函数”,且在R上单调递增,求所有可能的集合A与B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集为R,函数$f(x)=\sqrt{4-{x^2}}$的定义域为M,则∁RM为(  )
A.[-2,2]B.(-2,2)C.(-∞,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P在边长为1的正方形ABCD内运动,则动点P到顶点A的距离|PA|≤1概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点Q(2$\sqrt{2}$,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;
(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(直接给出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平行四边形ABCD中,已知AB=4,AD=3,∠DAB=$\frac{π}{3}$,点E,F分别在边AD,BC上,且$\overrightarrow{AD}$=3$\overrightarrow{AE}$,$\overrightarrow{BF}$=2$\overrightarrow{FC}$,则$\overrightarrow{AB}$•$\overrightarrow{EF}$的值为18.

查看答案和解析>>

同步练习册答案