【题目】在△ABC中,(1)已知a=,b=,B=45°,求A、C、c;
(2)已知sin A∶sin B∶sin C=(+1)∶(-1)∶,求最大角.
【答案】(1)A=60°,C=75°,c=,或A=120°,C=15°,c=. (2)
【解析】试题分析:(1)由正弦定理求解即可,注意三角形解的个数的讨论;(2)由条件可判断C最大,设出三边,根据余弦定理求解。
试题解析:
(1)由正弦定理及已知条件有=,
得sin A=,
∵a>b,
∴A>B=45°,
∴A=60°或120°.
①当A=60°时,C=180°-45°-60°=75°,
∴c===,
②当A=120°时,C=180°-45°-120°=15°,
∴c===.
综上,A=60°,C=75°,c=,或A=120°,C=15°,c=.
(2)根据正弦定理可知a∶b∶c=sin A∶sin B∶sin C=(+1)∶(-1)∶,
设,
由余弦定理的推理得
,
又,
∴
∴最大角为C且.
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合.如果对于的每一个含有个元素的子集, 中必有4个元素的和等于,称正整数为集合的一个“相关数”.
(Ⅰ)当时,判断5和6是否为集合的“相关数”,说明理由;
(Ⅱ)若为集合的“相关数”,证明: ;
(Ⅲ)给定正整数.求集合的“相关数” 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +b,其中a,b是常数且a>0.
(1)用函数单调性的定义证明f(x)在区间(0, ]上是单调递减函数;
(2)已知函数f(x)在区间[ ,+∞)上是单调递增函数,且在区间[1,2]上f(x)的最大值为5,最小值为3,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com